Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest

نویسندگان

  • Xiaoming Sun
  • Xiaoke Zhang
  • Shixiu Zhang
  • Guanhua Dai
  • Shijie Han
  • Wenju Liang
چکیده

The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil

Soil is a significant source of atmospheric N2O, and soil N2O emissions at a global scale are greatly affected by environment changes that include continuous deposition of atmospheric nitrogen and changing precipitation distribution. However, to date, field simulations of multiple factors that control the interaction between nitrogen deposition and precipitation on forest soil N2O emissions are...

متن کامل

CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the g...

متن کامل

The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China

BACKGROUND Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS A field manipulation experiment was conducted to examine the effects of war...

متن کامل

Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period

As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycl...

متن کامل

Reply to Remy et al.: Local and global limitations to forest productivity as mediators of biogeochemical response to forest edge effects.

Despite the heavily fragmented nature of the world’s forests (1), the response of forest carbon (C) and nitrogen (N) dynamics to edge effects is understudied. Contrasting our findings that edge effects did not alter soil C and N storage of temperate forests within residential landscapes in New England (2), Remy et al. (3) point to their work showing that belowground C andN storage increases nea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013